Nextef: KEK NEW X-BAND TEST FACILITY

Shuji Matsumoto¹, Mitsuo Akemoto, Noboru Kudoh, Tetsuo Shidara, Toshiyasu Higo, Shigeki Fukuda, Hiromitsu Nakajima, Hideki Matsushita, Kazue Yokoyama, Mitsuhiro Yoshida

Accelerator Laboratory, KEK, 1-1 Oho, Tsukuba, Ibaraki, 305-0801

Abstract

KEK New X-band Test Facility (Nextef) is under construction. The purpose of this facility is to conduct high power testing of X-band accelerator structures as well as the fundamental researches such as the RF breakdown experiments with specially designed waveguides. The facility will be ready to go in autumn 2007.

KEK X-band RF試験施設 (Nextef)について

1.はじめに

KEK New Xband Test Facility (Nextef)と名づけた 100MW級のXバンド(11.424GHz)RF試験施設をKEKB 入射器棟内であらたに建設している[1]。この施 設のねらいのひとつは、常伝導線形加速器におけ る高電界加速(加速勾配100MV/m)の可能性を探 ることにある。Nextefで使用するモジュレーター やクライストロンなど大電力RF機器類は、かつて 高エネルギー研アセンブリーホール内に展開され ていたリニアコライダー試験加速器施設(Global Linear Collider Test Accelerator、略称GLCTA)の資産 をそのまま受け継いでいる。

GLCTAは、2002年に建設開始後、加速管試験施 設やクライストロン試験ステーションが順次運用 されていったが、2004年の国際衝突型超伝導線形 加速器計画(ILCプロジェクト)の発足後、以後 予定されていた建設作業は凍結された。ILCプロ ジェクト関連施設建設のため、GLCTAは撤去する ことになったが、実際の撤去作業に入るまでの間、 この施設を利用して、Xバンド関連の試験をおこ なった。(2004年秋以降、施設名称は、X-band Test Facility略称XTFに変更。)

図1:加速管組み立てホール内に建設中のNextef

¹ E-mail: shuji.matsumoto@kek.jp

XTFのクライストロン試験ステーションは、一 足先に、KEKB入射器棟内のクライストロン組み 立てホール内へ2006年度中に移設し、Xバンドク ライストロン単体の専用試験施設として再び運用 されている(KLY Test Station)。一方の加速管試 験施設は、2007年初頭の運転終了と同時に解体作 業に入った。機器の大半はこのとき償却されたが、 主要ないくつかの機器を移設保管した。XTF解体 作業が完了した後、KEKB入射器棟加速管組み立 てホール内で、それら移設した機器等からなる新 規施設Nextefの建設を開始した。試験時に試験体 を格納するシールドルームは、組み立てホール内 に既存の、これまでSバンドおよびCバンドの加速 管試験に使用されてきたシールドを共用する。

図2: KEK平面図。移設前(GLCTA/XTF)、後 (Nextef、KLY Test Station)の場所を示す。

施設を動かすに必要な電力量を供給するため、 (モジュレーター専用420Vラインなどの)新規の 電力線を敷設する工事や冷却水の配管工事などの インフラ整備からはじまった建設作業は、その後 移設機器の組み付け作業に移っており、このまま 順調にいけば、今秋より運転開始ができる状態に なる見通しである。

秋以降のNextefの運転予定としては、 GLCTA/XTFで行ってきたXバンド帯加速管の高電 界試験[2]をひきつづき行なうほか、100MV/m以上 の電界強度が発生できる狭導波管などを用いたRF 放電の基礎的試験[3]も本格的に行なう予定であ る。また外部ユーザーによる試験にも協力してい く予定で、いまのところ、CERN-CLICグループが NextefでのCLICプロトタイプ加速管の試験を計画 している。

2.施設概要

Nextefの基本構成は、1)モジュレータ、クライ ストロン等よりなる大電力RF発生部、2)RF試験 体格納するコンクリートシールド(共用)とそこ までRFを搬送する導波管系、3)各種電源や、制 御機器、モニター等を収容する制御室よりなる。 RF発生部は、移設したGLCTA仕様モジュレータ1 台と50WWクライストロン2台から構成され、各ク ライストロンからの出力を合成して、最大100MW の出力を発生させる。これを低損失導波管で既存 のシールド内まで搬送し、各種試験に供する。装 置を構成する各種機器の制御機器や各種電源類、 モニター類を納めたラックを制御エリアに配置す る。図3に加速管組み立てホール内での配置状況 を示す。

図3:Nextef施設の平面図(KEKB入射器棟加速管組 み立てホール)。

Nextefの機能は以下の通り。

- 11.424GHz, 100MW, 400ns, 50pps, 24時間運転が可能。
- 50cm-thickのコンクリートシールド(S,Cバンドとの供用)。
- ●制御端末を現場に設け、これをKEKB入射器制御 システム内から監視。リモートでの運転も可能。
- LINUXとEPICSによる試験データ取得や保存。
- ●試験体でのRF放電時における各種RFパルス波形

の記録装置の設置。

 シールド内暗電流のモニターシステムの設置 (Faraday Cup, CTによる電流波形、分析磁石によるエネルギー同定)。

 その他汎用の検出器として、音響計測(SLACで 開発されたシステム)、光電子増倍管を用いたX 線検出と観測、Q-massモニターを備える。

3 . Nextefの構成機器

3.1 モジュレータ[4]

Nextef用モジュレーターは、旧GLCTA向けに2003 年度設計製作されたものを使用する。

 当モジュレーターの基本構成は、インバーター 充電器、PFN、サイラトロンによるスイッチより なる。インバーター方式をとることで、充電部を コンパクトにし、その他は、通常の方式をとるこ とで、信頼度を高めた。パルス出力は、パルスト ランスフォーマーで昇圧されクライストロンに給 電される。

クライストロン二本へ同時に給電するため、筐体内に二組のPFN回路を並列に配置。それぞれの回路に一個ずつサイラトロンを置く。

このモジュレーターは、XTFにて2004-2006年の 間、もっぱらクライストロン試験に供せられてい た。その時は、PFNの一組(並列のうち片側)の み稼動させ、クライストロン一本の負荷で運転し た。繰り返しは50ppsであった。運転状態は良好 であった。

2006年のクライストロン試験ステーションの移 設後しばらくXTFにそのまま置かれていたが、 XTF解体時に入射器棟に移設され、今後はNextefの モジュレーターとして、本来のクライストロンニ 本の並列負荷で運転される。

Peak Output Power	283 MW
Primary Output Voltage	21 kV
Primary Output Cur rent	13.6 kA
Pulse width	4.5 µs
Flat-top width	>1.6 µs
Flatness	±0.5%
Repetition Rate	150 pps

表<u>1:GLCTAモジュレーターの主要パラメータ</u>ー

表1にある本来の能力とくらべ、Nextefでの要求 性能(繰り返し50pps、RFパルス幅400ns)は、控 えめである。モジュレーターは、PFN段数を減ら し、RFパルス幅に見合った約2マイクロ秒のパル ス幅で運転する予定。

3.2 **クライストロン**[5]

GLCTA/XTFから移設してきたPPM収束クライスト ロンを二本使用する。クライストロンの運転パラ メーターを表2にあげた。

表 2 :Nextef でのクライストロンの主要パラメーター

Operating Frequency	11.424 GHz
RF Pulse Width	0.4 µs
Peak Output Power	50 MW
Beam Voltage	460 kV
Repetition Rate	50 pps
Efficiency	43 %

3.3制御系[6]

Nextefの制御システム概略は、

- 1) モジュレーター本体の運転制御はPLCで行われる。本体の各機器のインターロックのほか、クライストロンや導波管系(真空系)のインターロックもモジュレーターPLC上に外部インターロック信号として集約される。
- 2) RF波形をはじめ、各種の波形はオシロス コープなどの計測器を通して、PC上に集 約される。このPCを通じて、必要なデー ターのロギングも行われる。データーロ ギングに関しては、KEKB入射器の運転制 御システムに組み込まれる。

toondor system. non die beginning, later

図4:Nextefコントロールシステムダイアグラム。

コントロールシステムについては、先行する KLY Test Stationがそのまま雛型になっている。

5.まとめ

Nextef、KLY Test Stationは、今後KEKB入射器 各グループの協力のもと運用される予定である。 運転管理はKEKB入射器のそれに準じて行われる予 定で必要があれば、24時間の稼動が可能である。 クライストロン試験をおこなうKLY Test Station はすでに稼動していて、50MWクラスのパ ワーを供給する試験施設としても使用されている。 Nextef施設へのクライストロン供給の必要上から も、クライストロン試験ステーションの運用は今 後も続けられる。

KEKのX-bandグループは、RF放電の基礎的実験や 加速構造の試験、またRFコンポーネントの試験を 行う予定である。特定のプロジェクト研究のため に建設された施設ではないので、外部ユーザーの 使用にも自由がきくとおもわれる。

6.謝辞

移設計画の立案段階から現在にいたるまで、 KEKB入射器関係者に支援尽力いただいている。 加速管グループの柿原和久氏には、当初より加速 管組み立てホール内での移設建設作業の調整や実 務上で多大な協力をいただいた。ここに感謝いた します。

参考文献

- [1] http://www-linac.kek.jp/nextef/index.html.
- [2] T.Higo, et al., "Nornal Conducting High-gradient Studies at KEK", THP038, Proceedings of Linac 2006, Knoxville, Tennessee USA, 2006.
- [3] K.Yokoyama, et al., TP09, "High-Field Study of Reduced Cross-Sectional X-Band Waveguides", these proceedings.
- [4] M.Akemoto et al., "Pulse Modulator for X-band Klystron at GLCTA", Proceedings of the 1st Annual Meeting of Particle Scoiety of Japan and 29th Linear Accelerator Meeting in Japan.
- [5] S.Matsumoto, et al., "Study of PPM-Focused X-Band Pulse Klystron", THP027, Proceedings of Linac 2006, Knoxville, Tennessee USA, 2006.
- [6] T.Ushimoto, et al., "Control System for KEK X-Band RF Test Facility (Nextef)", WP58, these proceedings.